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Abstract

In this paper we present a novel approach for a surface elec-
tromyographic speech recognition system based on sub-word
units. Rather than using full word models as integrated in our
previous work we propose here smaller sub-word units as prereq-
uisites for large vocabulary speech recognition. This allows the
recognition of words not seen in the training set based on seen
sub-word units. Therefore we report on experiments with sylla-
bles and phonemes as sub-word units. We also developed a new
feature extraction method that gains significant improvement for
words and sub-word units.
Index Terms: silent speech, non-audible speech recognition, elec-
tromyography, sub-word unit comparison

1. Introduction
In the last decades, automatic speech recognition (ASR) has
evolved into a state where it is able to work well in several sce-
narios. However, there are still two side effects which constrain its
success in some special scenarios: First it performs significantly
worse when there is a lot of background noise present and sec-
ond a speaker needs to produce sound, which might disturb other
persons in certain environments. In these cases electromyographic
(EMG) speech recognition might help: Such a recognition system
processes electric signals caused by the articulatory muscles in or-
der to recognize non-audible (silent) speech which means that no
acoustic signal is produced.

As state of the art EMG speech recognition systems still work
with whole words, all words that should be recognized have to be
trained, which requires a huge amount of training data or drasti-
cally restricts the recognizable vocabulary. A well known solution
is to split the words in smaller units that are part of more than
one word, since this allows to recognize all combinations of these
units. In acoustic speech recognition, a phoneme turned out to be
most suitable as sub-word unit for most cases. Since EMG speech
recognition is based on capturing the muscle movements and the
configuration of the vocal tract this may lead to longer range con-
text dependency. This is why we also explored syllable units as an
option for EMG speech recognition.

2. Related Work
Research in EMG based speech recognition has increased over the
last 5 years, however it’s practical use is still limited to small do-
mains due to the fact that only full word models have been success-
fully applied. One attempt to work with a bigger corpus was done

by Jorgensen et al. [1]. He investigated the recognition of non-
audible speech by using surface EMG electrodes placed on the
larynx and sub lingual areas below the jaw. In addition to work-
ing with control words and digits he trained and recognized eigh-
teen vowels and twenty-three consonant phonemes. He reached
a recognition rate of 50% using a Neural Network classifier. In
[1] phonemes were recorded isolated and independently. The sub-
jects were asked to think of a ‘target’ reference word while sub-
vocalizing only the vowel in the given context with the correct
pronunciation.

The usage of syllables as phonetic units has been investigated
in small and large vocabulary speech recognition. Ganapathirajua
[2] achieved a gain of 20% by using an acoustic syllable-based
system instead of a comparable triphone system for the OGI Al-
phadigits task. However, for a vocabulary of 70 000 words 9 023
syllables were needed.

3. Sub-word Units for EMG-ASR
The usage of syllables has advantages and disadvantages. On one
hand, it is closely connected to human speech perception and ar-
ticulation. Especially in the context of EMG speech recognition it
may better take into account previous planning of muscle move-
ments in the cerebellum and also the overlapping of muscle activ-
ities. Previous work showed that the muscular activities run ahead
up to 50 ms before the acoustic signals [3]. These factors make
it more difficult to determine the exact time for the beginning and
the end of each phoneme within a syllable, which in contrast can
be regarded as an enclosed unit. On the other hand the training
data amount increases. When using a phoneme based system 45
phonemes have to be trained, while for a syllable based one up to
9 000 syllables are required for English. When a large vocabulary
should be covered, there are many syllables which appear only in
a small number of words.

As we found significant improvement when training on same
words in the same session, it is not feasible to train the full set of
syllables occurring in each test word. Nevertheless, for a restricted
vocabulary there is a choice between context dependent phoneme
models and syllables.

4. Methods
4.1. Data acquisition

For our study we tried to minimize the number of syllables and
selected a vocabulary of 32 English expressions consisting of only
21 syllables:all, alright, also, alter, always, center, early, earning,
enter, entertaining, entry, envy, euro, gateways, leaning, li, liter, n,



navy, right, rotating, row, sensor, sorted, sorting, so, tree, united, v,
watergate, water, ways. Each syllable is part of at least two words
so that the vocabulary could be split in two sets each consisting of
the same set of syllables.

In each recording session, twenty instances of each vocab-
ulary word and twenty instances of silence were recorded non-
audible. Two subjects, S1 and S2 (one female and one male), with
no known speech disorders participated in the study. We recorded
five sessions for each speaker and got a total data amount of 6523
seconds, which was split into training and test sets as explained
below.

The order of the words was randomly permuted and presented
to the subjects one at a time. A push-to-talk button which was
controlled by the subject was used to mark the beginning and the
end of each utterance. Subjects were asked to begin speaking ap-
proximately 1sec after pressing the button and to release the button
about 1sec after finishing the utterance. They were also asked to
keep their mouth open before the beginning of speech, because
otherwise the muscle movement pattern would be much differ-
ent whether a phoneme occurs at the beginning or the middle of
a word.

To identify the beginning of speech within the recording and
thereby minimizing the effect of the varying delay between push-
ing the button and the beginning of speech, we used a pseudo-word
silence. For the pseudo-word silence the speakers had to keep all
facial muscles relaxed for approximately 2sec.

EMG signals were collected for both subjects using seven
pairs of Ag/Ag-Cl electrodes. A self-adhesive button electrode
placed on the left wrist served as a common reference. The de-
tailed setup is explained in [4].

All electrode pairs were connected to a physiological data
recording system [5]. EMG responses were differentially ampli-
fied, filtered by a 300 Hz low-pass and a 1 Hz high-pass filter and
sampled at 600 Hz. In order to avoid loss of relevant information
in the signals we did not apply a 50 Hz notch filter which can be
used for the removal of line interference.

4.2. Feature extraction

4.2.1. Baseline system

As baseline system we used the configuration resulting from the
work of Maier-Hein et al. [4]. The signal data for each utterance
were transformed into a sequence of feature vectors. For each of
the 7 channels, 18-dimensional channel feature vectors were ex-
tracted from 54 ms observation windows with 4 ms overlap. In
order to obtain channel feature vectoroij for channelj and ob-
servation windowi the windowed Short Time Fourier Transform
(STFT) was computed. Delta coefficients served as the first 17 co-
efficients ofoij . The 18th coefficient was the mean of the time
domain values for the given observation window. The resulting
feature vectoroi for the observation windowi is the concatenation
of all channel feature vectorsoij .

4.2.2. Smaller observation window sizes

To allow a better recognition of phonemes, we changed the win-
dow size from 54 ms to 27 ms, since the shortest phonemes last
only about 40 ms and would be mixed with previous or following
phonemes otherwise. This reduction of the window size resulted
in less STFT coefficients: With a window size of 27 ms we got 9
STFT coefficients. By adding the time domain mean this sums up
to 10 coefficients per feature vector.

4.2.3. Time domain context feature

To optimize the recognition rate for sub-word units, we added a
new feature extraction method: Since the EMG signal depends on
the previous and succeeding position of the muscles, we added two
time domain context (TDC) coefficients, which are given by the
difference between the mean of the time domain values in the cur-
rent observation window and the mean of the observation window
40 ms before and after the current one. For a window size of 54
ms this results in 20 coefficients per channel and in 12 coefficients
for 27 ms windows respectively.

4.3. Sub-word division

To analyze the recognition with sub-word units, we tested three
unit types with and without context dependency: word units, syl-
lables and phonemes were explored. For a fair comparison we
used three states for each phoneme and each model unit. One of
the 21 syllables is comprised by one phoneme and modeled by
three states. Ten syllables with two phonemes each are modeled
by six states and the remainder are models by 9 states. The maxi-
mum number of phonemes for word models was ten. The different
sub-word division methods are shown in figure 1.

AO SIL L  R  AY T  SIL SILSIL A O L R A Y TSIL SILA L R I G H T

Figure 1: The different sub-word division methods: word model
(left hand side), syllabication (mid) and phoneme based division
(right hand side); dashed lines correspond to HMM states.

4.4. Model training

First order HMMs with Gaussian mixture models are used as clas-
sifiers as in most conventional ASR systems since they are able
to cope with both, variance in the time-scale and variance in the
shape of the observed data. Each training utterance was linearly
segmented into a left-to-right Hidden Markov Model (HMM) start-
ing with one silence state (SIL), followed by 3 states per phoneme
and one succeeding silence state. A mixture of 14 Gaussians per
state was initialized using kmeans. Afterwards the context inde-
pendent (CI) models were trained using the Expectation Maxi-
mization (EM) algorithm. The number of iterations was chosen
to be N = 4.

For the initialization of the context dependent (CD) triphone
syllable and phoneme models, the labels generated by the CI mod-
els were used. These models were also trained using four itera-
tions of the EM algorithm. Phoneme models were clustered (CL)
to reduce the number of models and thereby model the context de-
pendency in a more robust way. The clustered context dependent
models were also initialized using the CI labels and final four EM
iterations were applied.

4.5. Recognition

To recognize an utterance the corresponding sequence of feature
vectorsok was computed. Next, the Viterbi alignment for each
vocabulary wordWj was determined and the word corresponding
to the best Viterbi score was output as the hypothesis. Feature
extraction, HMM training, and classification were performed using
the Janus Recognition Toolkit (JRTk) [6].



5. Experiments and Results
5.1. Test on seen words

5.1.1. Optimized feature extraction methods

First the new feature extraction methods were tested. Therefore,
all recordings of each word were split into two equal sets, one
for training and the other for testing. This means that each word
of the word list was trained on half of the recordings and tested
on the other half. After testing sets were swapped for a second
iteration. All combinations of the new feature extraction methods
were tested, a window size of 54 ms and 27 ms, with and without
time domain context feature.

We tested the different feature sets on a word recognizer, a
recognizer based on syllables as well as phonemes.

54 ms 27 ms 54 ms TDC 27 ms TDC

Words 64.8 78.1 71.2 82.9
Syllables (CI) 51.0 64.6 58.0 73.3
Syllables (CD) 57.1 71.2 63.6 79.3
Phonemes (CI) 57.3 57.7 65.3 67.3
Phonemes (CD) 64.0 62.9 71.7 72.6
Phonemes (CL) 68.5 72.4 75.5 79.8

Table 1:Average word accuracies (in %) for round-robin testing.

The results in table 1 show that both changes (4.2.2 and 4.2.3)
of the feature set cause a significant improvement in all cases. The
largest improvement ranging from 6.5 to 9.6 percent points gain
in word accuracy was caused by the new time domain context fea-
ture. This stresses the impact of the time domain for EMG signal
preprocessing in general and with respect to context dependency
in particular. We found in our experiments that a smaller window
size causes a notable improvement in nearly all cases, especially
for word units and syllable units (up to 15.7 % abs.).

Since the systems with a window size of 27 ms and usage of
the TDC feature performed best, these features were used in all
following experiments.

5.1.2. Sub-word unit comparison

In table 2 the results for the optimized system are shown per
speaker to compare the different sub-word division methods.

Because the phonemes occur more often in the words of the
training set (avg. 60.43 training instances per model) than the syl-
lables (avg. 27.62 training instances per model), at the first part of
this experiment (Phonemes A) the number of recordings that were
used for training of the phoneme models was reduced so that the
phoneme models got the same number of training examples as the
syllable models.

The second part of the experiment (Phonemes B) focused
more on an application based point of view considering the lim-
ited amount of training data caused by session dependency. In this
experiment both model types were trained with the same number
of recordings, so that phoneme models could perform better be-
cause of the higher number of training instances.

We discriminate two context dependent systems, CD and CL.
CL is the clustered system where each context dependent unit
has its own codebook and mixture weights, while the CD system
shares the codebooks of the context independent models. We give

cbs dss avg. (min / max)

Words 427 427 82.9 (63.0 / 95.0)
Syllables (CI) 154 154 73.3 (58.3 / 87.5)
Syllables (CD) 154 545 79.3 (62.2 / 92.2)

Phonemes (CI, A) 137 137 60.5 (41.9 / 78.7)
Phonemes (CD, A) 137 541 66.3 (49.7 / 83.9)
Phonemes (CL, A) 311 311 69.1 (48.3 / 87.3)
Phonemes (CI, B) 137 137 67.3 (49.9 / 79.7)
Phonemes (CD, B) 137 541 72.6 (54.3 / 85.9)
Phonemes (CL, B) 311 311 79.8 (58.4 / 93.3)

Table 2:Averaged number of codebook set entries (cbs) and distri-
bution set entries (dss) and word accuracies (in %) for round-robin
testing.

numbers for the phoneme CD system to compare with the numbers
of the syllable CD system.

The results in table 2 show that our context dependent
phoneme based EMG speech recognition system works nearly as
good as a word based system and slightly better than the syllable
models when using all training data. But it should be considered
that we only needed to train 21 syllables because of the special
word list. That is why we only got 154 codebook set entries for
the syllable system - if we had used a larger word list the number
of syllables and their codebook set entries would have been much
higher in comparison to the number of phonemes. For a fair com-
parison between phoneme and syllable units, where both units got
the same number of training instances per model, syllables work
better because they can model a larger context.

5.2. Test on unseen words

While in the previous tests seen words were recognized, we test in
this section on words that have not been seen in the training (un-
seen words). Therefore, the vocabulary was split into two disjoint
sets, one training and one test set. The words in the test set consist
of the same syllables as the words in the training set, so that all
phonemes and syllables could be trained.

For an acoustic speech recognition system training of
phonemes allow the recognition of all combinations of these
phonemes and so the recognition of all words consisting of these
combinations. This test investigates whether EMG speech recog-
nition performs well for context sizes used in ASR or whether
the context is much more important and goes beyond triphones.
To do so we tested both a phoneme based system and a syllable
based system. While the syllable based system covers a larger
context, the phoneme based system can obtain more training data
per phoneme.

The optimized feature set (27 ms window size with time do-
main context feature) was used for this test.

When recognizing unseen words, it turned out that the
syllable-based system does not improve when using context de-
pendency in the cross test, while it does improve in the previous
test. That is because, now that the test words do not occur in the
training set and we hence only trained half the number of words,
we used the same number of training recordings but these record-
ings covered less context variability. That is also the reason why
the number of codebook set entries at the context dependent sys-
tems is lower than at the previous test (table 3).

Another difference to the previous test is that the phoneme



alright also alter always center early enter entertaining entry envy euro leaning liter navy sorted watergate PERFORMANCE

alright 60.5 0 0 38.0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5 60.5
also 6.5 75.5 5.5 3.0 0 1.0 0 0 2.0 0.5 4.0 0 0.5 0.5 0.5 0.5 75.5
alter 4.5 5.0 55.0 2.0 5.5 6.0 9.0 2.0 1.0 0 0 0.5 3.0 0.5 2.0 4.0 55.0

always 0.5 0 0 98.5 0 0 0 0 0 0 0 0.5 0 0.5 0 0 98.5
center 3.0 1.5 1.0 5.0 62.0 1.0 1.5 2.0 1.0 0 1.0 9.0 3.5 0 8.0 0.5 62.0
early 6.5 3.5 22.5 13.5 0 32.5 0.5 4.5 4.5 0 1.0 3.5 2.5 0.5 1.5 3.0 32.5
enter 0.5 3.5 5.0 7.0 16.0 1.0 41.5 3.5 7.0 2.5 0.5 4.5 3.0 0.5 4.0 0 41.5

entertaining 2.0 0.5 0 1.0 0.5 0 1.5 67.5 1.0 0 0 21.5 0.5 0 0 4.0 67.5
entry 1.5 0.5 0 1.0 0.5 0.5 0 3.5 86.5 2.5 0.5 1.0 1.0 0.5 0 0.5 86.5
envy 2.5 0.5 0 8.0 0 0.5 0 0 9.5 70.0 1.0 0 0 7.0 0 1.0 70.0
euro 1.0 3.5 0 2.0 0 0 0 0.5 1.5 0 89.0 0 0 0 2.5 0 89.0

leaning 0.5 1.0 0 4.0 0 0.5 0 9.0 0.5 0 0 81.0 3.0 0.5 0 0 81.0
liter 4.5 5.5 15.5 2.0 6.0 3.0 0 0.5 3.5 1.5 4.0 18.5 29.0 0 6.5 0 29.0
navy 1.0 1.0 0.5 11.5 0 1.5 0 1.5 10.5 35.5 0.5 1.5 0.5 32.0 1.0 1.5 32.0
sorted 5.0 0 0.5 9.0 3.5 0.5 0 1.0 3.0 0 0 3.0 0.5 0.5 72.0 1.5 72.0

watergate 11.5 0 0 39.0 0 0 0 0.5 0 0 0.5 2.5 0 0 0.5 45.5 45.5
TOTAL 7.0 6.3 6.6 15.3 5.9 3.0 3.4 6.0 8.2 7.0 6.4 9.2 2.9 2.7 6.2 3.9 62.4

Table 4:The combined results of the unseen words tests for clustered phoneme models, given in word accuracies (in %). On the left side
the references are listed, on top the hypothesis. The bottom line shows the normalized occurrence rate (in %).

cbs dss avg. (min / max)

Syllables (CI) 154 154 54.1 (48.4 / 67.5)
Syllables (CD) 154 493 55.1 (48.1 / 66.3)
Phonemes (CI) 137 137 56.9 (44.7 / 70.3)
Phonemes (CD) 137 441 58.8 (43.8 / 68.8)
Phonemes (CL) 246 246 62.4 (51.3 / 70.6)

Table 3: Averaged number of codebook set entries (cbs) and dis-
tribution set entries (dss) and word accuracies (in %) for testing
of unseen words.

based system performs better than the syllable based system even
at the non clustered states. This may also be caused by the smaller
number of words in the training set. Since several syllables occur
only in one word, it is difficult to segment these syllables.

At the confusion matrix in table 4 it is noticeable that some
words have bad recognition rates, i.e.navy. From the mapping be-
tween phonemes and muscle movements we derived that the mus-
cle movement pattern for vocalizing the wordsnavyandenvyare
quite similar (except the movement of the tongue, which is only
barely detected using our setup). So the wordenvyis often falsely
recognized as the wordnavy.

6. Conclusions and Future Work

Our tests show that signal processing for EMG speech recognition
can be improved by paying more regard to time domain values.
The tests also show that it is possible to build an EMG speech rec-
ognizer based on sub-word units. Therefore syllables are the bet-
ter choice when using the same number of training instances per
model, because they come closer to the EMG speech characteris-
tic. However, syllables need more training data and when using
the same number of training recordings, phoneme models perform
slightly better. The second test shows that it is also possible to
recognize unseen words with a recognition rate of 62.4%.

Since the time domain values are quite important for recog-
nition, we expect further improvement by using better processing
methods like in [7].
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