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ABSTRACT
We study the phenomenon of evolution of cooperation in
a society of self-interested agents using repeated games in
graphs. A repeated game in a graph is a multiple round
game, where, in each round, an agent gains payoff by playing
a game with its neighbors and updates its action (state) by
using the actions and/or payoffs of its neighbors. The inter-
action model between the agents is a two-player, two-action
(cooperate and defect) Prisoner’s Dilemma (PD) game (a
prototypical model for interaction between self-interested
agents). The conventional wisdom is that the presence of
network structure enhances cooperation and current models
use multiagent simulation to show evolution of cooperation.
However, these results are based on particular combination
of interaction game, network model and state update rules
(e.g., PD game on a grid with imitate your best neighbor
rule leads to evolution of cooperation). The state-of-the-
art lacks a comprehensive picture of the dependence of the
emergence of cooperation on model parameters like network
topology, interaction game, state update rules and initial
fraction of cooperators. We perform a thorough study of the
phenomenon of evolution of cooperation using (a) a set of
popular categories of networks, namely, grid, random net-
works, scale-free networks, and small-world networks and
(b) a set of cognitively motivated update rules. Our sim-
ulation results show that the evolution of cooperation in
networked systems is quite nuanced and depends on the
combination of network type, update rules and the initial
fraction of cooperating agents. We also provide an analysis
to support our simulation results.
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1. INTRODUCTION
The emergence of cooperation in a system of interacting

self-interested agents has been studied in social science [3],
evolutionary biology [13] and physics [18]. Examples of evo-
lution of cooperation can be seen in natural systems includ-
ing cellular structures like RNA [20], microbial organisms [6],
animals [17], and humans [2]. The interaction model is
a Prisoners’ Dilemma (PD) game, which is a well-known
game-theoretical model to study social dilemma situations
among rational, self-interested, utility maximizing agents.
Each player has two actions (or strategies): cooperate and
defect. Defect is a dominant action, i.e., the payoff for play-
ing defect is higher irrespective of the opponent’s action.
Thus, in the one-shot version, both players should always
choose to defect, which is the only Nash equilibrium of the
game. However, the equilibrium is not Pareto-efficient, i.e.,
both players would be better off by choosing to cooperate.
Hence, a social dilemma arises. This contradicts the ob-
served phenomenon of cooperation in human experiments.
Repeated interaction was shown to be one of the factors for
evolution of cooperation in two-agent PD games [3]. How-
ever, in multiagent interaction, evolutionary game theory
has shown that in a big (or infinite) population, if players
have repeated random encounters, a population of cooper-
ators cannot resist invasion by defectors, and thus coop-
eration cannot survive. Defection is the only evolutionary
stable strategy. Subsequently, it was shown that if the inter-
action between the players has a network structure, cooper-
ation emerges and can be sustained. This phenomenon was
initially shown (via multiagent simulations) for grids [13]
and later for scale-free networks [16] or graphs with adap-
tive topology [22]. In this paper, we perform simulation
studies to critically examine the following question: Under
what conditions does cooperation emerge in a network of in-
teracting agents?

A repeated PD game proceeds in multiple rounds. In each
round, an agent plays the game with all its neighbors and
earns the aggregate payoff of all the games. The agent uses
the payoff of its neighbors (including self) to decide the ac-
tion for the next round. Nowak and May [13] used this model
to show evolution of cooperation in a system of agents or-
ganized in a grid and used imitate-best-neighbor as a deter-
ministic update rule. Subsequent work showed emergence of
cooperation with the agents organized according to different
network structure and using different update rules (see [16],
and [18] for a review). However, these results are based on
particular combination of interaction game, network model,
and state update rules. The state-of-the art lacks a compre-



hensive picture of the dependence of the emergence of coop-
eration on the model parameters like the network topology,
the update rules and the initial fraction of cooperators.

Our motivation for studying evolution of cooperation is
two-fold. First, we want to understand the reasons behind
evolution of cooperation in self-interested agents in natural
systems. The complementary sociological question of emer-
gence of conflict in a society of humans can also be studied in
the same framework [11]. The second motivation comes from
the design of autonomous artificial multiagent societies (e.g.,
an autonomous robot colony operating on extra-planetary
surfaces). Social dilemma situations where an individual
robot objective is in conflict with the social objective may
arise and it is impractical for a designer to foresee every
possible situation. An alternate way is to design protocols
that ensure cooperation among the agents in social dilemma
situations. In this paper, we will not concern ourselves with
the applications aspect. We will perform simulation stud-
ies to characterize the parameters and provide basic under-
standing of situations under which cooperation emerges in
a multiagent society.

For the multiagent society, we assume simple agents that
are myopic, of bounded rationality, organized according to
a graph with fixed topology and repeatedly play a PD game
with each other. We study evolution of cooperation using
(a) a set of popular categories of networks, namely, grids,
random, scale-free, and small-world networks and (b) a set
of cognitively motivated state (or action) update rules. The
rules we use are both deterministic and stochastic in na-
ture. Cooperation is said to evolve in a society if the initial
fraction of cooperators is lower than the final fraction of co-
operators. We show by simulation that the phenomenon of
evolution of cooperation is quite nuanced and depends on
the graph topology, the initial fraction of cooperators, and
the state update rule. In particular, we show that using
the imitate-best-neighbor rule (as used in [13]), cooperation
evolves in grids or scale-free networks for d > 0.3 but not
in random or small-world networks (where d is the initial
fraction of cooperators). We also show that the stochas-
tic update rule used in [16] works only for scale-free net-
works and not for other types. This is significant because it
shows that using the same update rule may not work across
all network topologies. The update rules that show uni-
form performance irrespective of the network topology are
(a) imitate the best action in your neighborhood (BS) and
(b) win stay, lose shift (WSLS). BS ensures emergence of
cooperation for d ≥ 0.6, whereas WSLS ensures evolution of
cooperation for d ≤ 0.5. Moreover, for a given network type
WSLS leads to the same final fraction of cooperators irre-
spective of the initial fraction. Although WSLS was shown
to be a winning strategy update rule in two-player games,
to the best of our knowledge, this rule has not been used
in multiplayer repeated games. We believe that our charac-
terization of the conditions under which cooperation evolves
gives a more complete picture about emergence of cooper-
ation for repeatedly interacting networked agents. This is
the primary contribution of our work.

This paper is organized as follows: In Section 2, we dis-
cuss the relevant literature and in Section 3, we define our
mathematical model including the network structures and
state update rules used in the paper. In Section 4, we de-
scribe our simulation setup and in Section 5 we present our
findings. In Section 6 we present our conclusions and outline

future research directions.

2. RELATED WORK
The literature on using repeated games for studying evo-

lution of cooperation among self-interested agents, can be
classified according to the the number of players, interaction
game model, and the interaction structure of the players.
Game play can be between two players or between multi-
ple players. In the multiagent setting, the agents may form
an unstructured population where players randomly inter-
act with each other or there may be structured interaction
between them. For structured interaction, the interaction
network may be of fixed or variable topology [22]. Both PD
and the snowdrift game [7] has been used as the interaction
model between agents, although (arguably) the PD game is
more popular. For two-player games Axelrod first showed
in a computer tournament that state update rules that rely
on reciprocal altruism, such as tit-for-tat, where a player
starts with cooperation and then imitates its opponent, can
lead to the evolution of cooperation [2]. Similar results have
been obtained for win-stay, lose-shift [12]. In this work, we
concentrate on repeated PD games in population of agents
whose interaction network has a fixed topology. Therefore
we will restrict our review to repeated PD games in graphs.

Nowak and May [13] first demonstrated that cooperation
evolves for memoryless agents playing repeated PD game
with their 8 neighbors in a two-dimensional grid. The up-
date rule used was deterministic imitate-best-neighbor. They
show that cooperation evolves over a wide range of payoff
parameters and the final fraction of cooperators is indepen-
dent of the initial fraction. They also note that cooperators
and defectors exist in clusters (or patterns) and the pat-
terns are unstable against small random perturbations [10].
Subsequent research has tried to replicate the evolution of
cooperation in different networks and using different update
rules [16, 19, 5, 1]. A comprehensive review on evolutionary
games in graphs including repeated games in graphs is given
in [18].

Santos et al. [16] investigate the influence of Barábasi-
Albert scale-free networks on cooperative behavior in com-
parison to complete, single-scale and random scale-free net-
works and show a clear rise in the final fraction of coop-
erators with the heterogeneity of the degrees. The update
rule is a stochastic imitation rule (rule SA in Section 3).
Tang et al. [5] demonstrates that there exist optimal values
of the average degree for each kind of network leading to the
best cooperation level. They test random, Barábasi-Albert
scale-free, and Newman-Watts small-world graphs under a
stochastic update rule that depends on the normalized pay-
off difference to a randomly chosen neighbor. They show via
simulation that there is an optimal degree for cooperation in
each network which is quite constant over a certain range of
T (payoff for defecting when the opponent cooperates). Co-
operation is highest for small average degrees ranging from
3 to 8. However, this is only done for an initial fraction of
0.5, a stochastic update rule, and 10 different realizations of
the particular graph. The results on evolution of coopera-
tion have been usually obtained on different networks using
a particular state update rule. The concern that changing
the state update rule may affect the evolution of coopera-
tion has not been addressed in the literature. Therefore,
we study the evolution of cooperation across a variety of
networks with different update rules.



There has also been work on repeated PD games in graphs
with variable topology [22, 8]. In [22], the initial graph is
assumed to be a random network and the agents are allowed
to (stochastically) break links with their neighbors playing
defect and form a new link with their neighbor’s neighbor.
The authors show that this boosts cooperation in the society.
In this paper, we do not consider variable graph topology. A
study similar to ours can be done for networks with variable
topology and we keep this as a future work.

3. PROBLEM MODEL

3.1 Network Models
The agent interactions can be encoded as an undirected

graph G = (V, E) where V = {v1, v2, . . . , vn} are a set of n
nodes (or agents) and E ⊆ V ×V is a set of edges. The graph
topology is fixed throughout the game. Two agents vi and vj

are neighbors if (vi, vj) ∈ E. N (i) = {vj |(vi, vj) ∈ E} ⊂ V
is the set of vi’s neighbors and |N (i)| is the degree of node
vi. N+(i) = N (i) ∪ {vi}.
We use four different graph types for the simulations:
Scale-free network: In a scale-free graph, the distribution of
node degree follow a power law, Nd ∝ d−γ , where Nd is the
number of nodes of degree d and γ > 0 is a constant (typ-
ically γ ∈ [2, 3]). We use the Barabási-Albert model with
average degree 4 [4].
Small-world network: A small-world graph shows a high
clustering coefficient (as defined in [21]) and a short aver-
age path length. We use the Watts-Strogatz model with
average degree 4 [21]. First, a ring is built and each node
is connected to the 2 neighboring sites on each side. Then,
links are randomly released and reconnected to other nodes.
We set the rewiring probability to 0.2, which leads to an
average degree of roughly 4.
Random network: A network where a link between nodes is
set with a predefined probability p. The probability that
a vertex vi has ki neighbors follows a binomial distribu-
tion B(n − 1, p). For large n and p ≤ 0.05 the degree
distribution can be approximated by a Poisson distribution

Prob(ki = k) = exp(λ)· λk

k!
with λ = n·p. We set p = 0.05 to

ensure connectedness. The clustering coefficient is usually
low.
Grid: A grid is a two-dimensional lattice where each inner
player has 4 neighbors, each boundary player 3 and each
corner player 2. The clustering coefficient is 0.

3.2 Repeated PD Games in Networks
A PD game is a two-player game where each agent has

two actions, Ab={cooperate(1), defect(0)}. The payoffs for
two players are symmetric with the payoff matrix entries

1 0
1 R S
0 T P

For a PD, T > P > R > S holds and for repeated PD
games T + S < 2R. We assume R = 1, P = 0.1, S = 0 with
the incentive to defect T being the only parameter.

In a repeated PD game in a network, there are n-players
that form the nodes of the graph and the game proceeds in

rounds. Each round has two phases: (a) In the game playing
phase the players play the PD game with all their neighbors
with a fixed strategy and compute their total payoff. (b) In
the strategy update phase, each player updates its strategies
according to the same action update rule. Such a rule might
be a function of the neighbors’ states, payoffs and/or the
agent’s own state and payoff. In our model the action update
rule is synchronous.

Let si(t) denote the state of player i at round t. The total
payoff, pi(t), is the sum of the payoffs of the separate games
in player i’s neighborhood N (i):

pi(t) =
X

j∈Ni

[Rsi(t)sj(t) + T (1− si(t))sj(t)+

S(1− sj(t))si(t) + P (1− si(t))(1− sj(t))]

3.3 State Update Rules and Convergence
In each round, the agents update their states according to

a common state update rule. The rules that we use can be
classified along two axes: innovative or non-innovative and
deterministic or stochastic. Rules that use states already ex-
isting in the neighborhood are non-innovative (e.g., imitate-
best-neighbor or imitate-best-strategy) whereas rules that
can switch to a strategy not in their neighborhood are called
innovative rules (e.g., win-stay, lose-shift). We use the fol-
lowing rules:

Imitate-best-neighbor (IB): Each agent imitates the action
of the wealthiest agent (including itself) in the next round. If
two or more players have the same payoff, the agent chooses
randomly between them. The state update for agent i can
be formalized as

si(t) = sj(t− 1) where j = arg max
k∈N+(i)

(pk(t− 1))

Imitate-best-strategy (BS): An agent copies the strategy that
accumulates the highest payoff in its neighborhood. Each
agent sums up the payoff of all cooperating as well as the
payoff of all defecting neighbors including itself.
Let agent i play strategy s1 in round t − 1 and have qi

neighbors. We denote its neighbors playing strategy s1 and
i itself by G1, where |G1| = n1. The neighbors playing s2 are
denoted by G2, where |G2| = n2. It holds that G1 ∪ G2 =
N+

i and n1 + n2 = qi + 1. Let w be the probability of
switching. The update rule in any round t is as follows:

w =

(
1 if

P
i∈G1

pt−1(i) <
P

k∈G2
pt−1(k)

0 otherwise

Win-stay, lose-shift (WSLS): In a multiplayer setting, a
strategy is maintained only if the current payoff p is at least
as high as in the former round. We need to introduce a
short-term (one-round) memory in order to calculate the
payoff difference. In our case, there are only two possible
strategies s1 and s2. In any round t the update rule is

w =

(
1 if pt−1 < pt−2

0 if pt−1 ≥ pt−2

Stochastic imitate-best-neighbor (stIB): This rule represents
a stochastic version of the IB rule. Each agent i picks the
best neighbor j in N+(i) and imitates its strategy with
a probability w depending on the payoff difference ∆pi,j :
w = 1/(1 + exp(−β∆pi,j)). In test runs, β = 0.75 gives a
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Figure 1: A typical oscillatory state with the IB rule. Green nodes represent cooperators, black defectors,
the number in a node corresponds to its payoff p. We only display relevant part of the grid. The state of
period x will be repeated in period x + 3.

reasonable trade-off between the payoff difference and the
probability to switch.
Stochastic imitate-best-strategy (stBS): The strategy that
yields a higher payoff in a neighborhood is imitated with
probability of its total payoff divided by the total payoff in
the neighborhood. Otherwise, the player keeps its current
strategy.
Stochastic win-stay, lose-shift (stWSLS): If a player’s pay-
off deteriorates in round t, the player will switch strategies
with a probability w depending on the difference of its cur-
rent and last payoff ∆pt−1,t: w = 1/(1 + exp(−β∆pt−1,t))
with β = 0.75.
Stochastic imitate-random-neighbor (SA): The rule is de-
scribed and used in [16]: for each i, one neighbor j among
all ki neighbors is picked at random. Only if pj > pi, i im-
itates j’s strategy with probability (pj − pi)/k>D>, where
k> = max(ki, kj) and D> = min(T, 1)−max(S, 0).

The stochastic rules that we use are counterparts of our
deterministic rules (except for the SA rule, taken from [16]).
The deterministic IB rule is taken from [13] and the WSLS is
taken from [12]. These rules are simple heuristics that have
been shown to be used by humans for decision making under
certain circumstances. Note that we have not used the best
response strategy because for our model it always leads to
evolution of defection among all agents. The imitating rules
also have an evolutionary biology interpretation. Instead of
a player updating its state, we can say that in each round,
neighbors are competing against each other for occupying
the empty node in their middle. The player with highest
payoff, i.e., fittest player wins and its strategy gets replicated
(with some probability in stochastic updates).

Steady States: Since our repeated game model is a dynam-
ical system and we will use simulations to study the evolu-
tion of cooperation it is important to understand the conver-
gence properties of the system to design appropriate stop-
ping criterion for simulations. Note that the all-cooperate
and all-defect solutions are trivial steady states for all the
state update rules. For deterministic rules, a steady state is
reached if the concatenated strategy vector (state vector) of
all agents repeats itself st = st−1. For our system, we can
show that we may not reach a steady state. Figure 1 shows
a simple example demonstrating that oscillations can occur
in a repeated PD game in grids. Figure 1, shows the part
of a grid network where players will keep changing strate-
gies. For some boundary nodes we give ranges for their pay-

off. As long as these payoff requirements are fulfilled, we do
not have to consider any further players. Simple calculation
shows that the system will oscillate.

For stochastic rules, the notion of convergence is different
as the state vector represents the realization of the current
probability to cooperate of each player. Thus, in the strict
sense, this probability has to stay within a certain range
for each player over time to ensure convergence. From our
results we see that this does not happen as the current prob-
ability in a particular round t does not depend on the one
of the round t− 1, but on the realization of this probability.
A more simple criterion could be that running averages of
fc for each player do not change much.

4. SETUP OF THE SIMULATIONS
We test three deterministic and four stochastic update

rules on four different networks: scale-free, small-world, grid
and random networks. Three stochastic rules are counter-
parts of the deterministic versions, the fourth comes from
the literature. We call the combination of a particular up-
date rule, graph and initial fraction of cooperators a setting.
For each setting, we perform 100 runs, each with a different
realization of the graph if there is a stochastic component
in the setup (except for grids, where there is no stochastic
component). We compute the average final fraction of coop-
erators, fc, over all the runs and also compute the standard
deviation over the final fraction of cooperators, σ. For all
the results that we present σ is quite low except where we
explicitly mention. For a given initial fraction of coopera-
tors, each player is randomly assigned the action cooperate
or defect such that the ratio of total number of cooperators
to defectors is equal to the given fraction.

Stopping criterion for simulations: For deterministic rules,
we simulate for a maximum of t = 500 rounds. If the simu-
lation converges, we take the last state as final result. If not,
we average over the last five rounds. For stochastic update
rules, we simulate over t = 5000 rounds and average over
the last 100 rounds. The number of rounds to average over
was heuristically determined after finding that the deviation
over the last few runs usually is very low.

We use values of (T ∈ {1.1, 1.2}) for most of our simula-
tions, except for grids. Higher values of T will give rise to
more defection. We test several initial fractions of cooper-
ators d (d ∈ {0.1, 0.3, 0.5, 0.7, 0.9}). In some cases we test
additional values in order to determine more exact thresh-



olds or to point out differences between certain settings.
In forming our graphs we ensure that all of them are con-

nected. We simulate on graphs with 750 and 1000 nodes.
The IB rule in random networks is the only setting where we
find the scaling of a network to change results for fc, because
the average degree changes with the number of nodes and the
number of neighbors matters in imitating rules. Therefore,
simulations of this setting have be to made with caution and
be tested for different levels of n and p. In all other settings,
differences in fc between n = 750 and n = 1000 are smaller
than 5%. Research about the influence of the average degree
states that an increasing average degree usually leads to less
cooperation [14].

5. SIMULATION RESULTS
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Figure 2: In a grid where the dotted link does not
exist, the defector only yields a payoff of 2.5 and co-
operation will spread until it reaches state (b) with
fc = 84% after 5 rounds. Adding only one link to (a)
and therefore increasing the clustering coefficient in-
creases the defector’s payoff to 3.7 and leads to 100%
defection after 3 rounds (T = 1.2).

We want to have a general insight about conditions under
which there is evolution of cooperation, i.e., the final fraction
of cooperators fc is higher than the initial fraction d. Table
1 gives the general findings. Most of the literature focuses
on whether cooperation emerges at all (by looking at the
final fraction of cooperators), whereas we want to focus on
the relation of the final fraction of cooperators to the ini-
tial fraction, which has not received much attention so far.
Comparing the obtained results of T = 1.1 and T = 1.2,
there is hardly any difference except for random networks.
We will come back to this issue in 5.4. Thus, we only display
results for T = 1.2 in Figure 3. In grids, there is no differ-
ence for the IB rule, because the interaction structure is very
simple. Possible constellations of payoffs and strategies are
very limited and stay the same for these two levels of T . If
we set T = 1.3 in grids, one new constellation that helps
defectors at the first glance actually leads to the collapse
of bigger clusters of defectors and therefore to higher final
fractions of cooperators. From simulations we see that this
development abruptly ends starting from T = 1.4, where
defectors are better off in most constellations and fc drops
drastically.

5.1 Scale-Free Networks
In scale-free networks, all the state-update rules that we

study show emergence of cooperation for different ranges of
the initial fraction of cooperators. From Figure 3, we see

that the IB rule leads to evolution of cooperation for both
deterministic and stochastic versions. For the deterministic
IB rule, we further observe, that even though most of the
runs converge, there is a large standard deviation σ = 0.15
to 0.46. This is because the distribution of fc is bimodal: ei-
ther fc drops to zero or reaches very high values. Averaging
over 100 runs gives the obtained high levels. It has already
been pointed out that the important factor for cooperation
or defection in scale-free networks is the behavior of high-
degree nodes [16]. If a high degree node defects it can exploit
all linked cooperators and gain a high payoff. Imitating the
best, all its neighbors will switch to defection. From this
state onwards it is not likely that defectors find a wealthier
cooperator as cooperators surrounded by defectors do not
obtain payoffs. Additionally, a high-degree node still accu-
mulates relatively high payoffs even for defect-defect links
because of sheer number. In simulations where we apply
a normalization of payoffs by the number of neighbors a
drastic drop of fc is observed and there is no evolution of
cooperation. Another indicator revealing the importance of
the heterogeneity in degrees is that we find the highest de-
gree node cooperating in 100% of the runs with high final
levels and defecting in all runs with a very low final per-
centage of cooperators. If there are cooperators in the cases
with low fc, they usually occur in a cluster around a wealthy
cooperator.

For the SA rule used by Santos et al [15], we find a higher
final fraction of cooperators than with any IB rule in scale-
free networks. Like the deterministic IB rule, in this case,
the standard deviation σ is very high, but unlike the IB
rule the distribution is not bimodal. Although the SA rule
performs well for scale-free networks, it does not lead to any
cooperation in grids and random networks and only small
to levels in small-world graphs.

5.2 Grids
In grids we find high cooperation rates with the IB rule.

A closer look at the dynamics shows that clustering is the
crucial factor for the success of cooperators in grids as al-
ready pointed out in [13]. A cluster of cooperators is a set of
cooperating nodes that are connected to each other. Bound-
ary players of clusters of cooperators are the nodes that are
also linked to defectors. In settings with low values of T ,
a 2 × 2 cluster of cooperators already leads to propagation
of cooperation through the whole network. There are sev-
eral possibilities for defectors to survive, e.g., in corners, in
a line of 4 players or in several spatial structures. However,
too big clusters of defectors become unstable at low levels of
T . For clusters of cooperators, the well-defined interaction
with defecting neighbors originating from the typical grid
structure, is helpful as defectors cannot exploit cooperators
in the middle of clusters. Cooperators on the boundary will
not turn into defectors as long as the neighboring defector
has less than four cooperating neighbors. The cooperator in
the middle of the cluster is the wealthiest player and backs
up the boundary cooperators.

However, note that the stochastic IB rule does not lead
to cooperation in grids. The success of cooperators depends
on the formation of clusters. However, cooperators in the
middle of clusters may randomly turn into defectors. A sin-
gle defector surrounded by only cooperators can turn all its
neighbors into defectors. The above intuition is also true
for the SA rule and hence it does not lead to cooperation.



Table 1: Summary of the evolution of cooperation with different update rules and networks. Yes denotes
that there is evolution of cooperation with the range of the initial fraction of cooperators d for cooperation
to emerge given in parentheses. Thresholds for d are indicative and not exact.

Rule/Graph Scale-free Small-world Grid Random
IB yes (d > 0.3) no yes (0.3 ≤ d < 0.9) no
BS yes (d ≥ 0.6)

WSLS yes (d ≤ 0.5) yes (d ≤ 0.7)
stIB yes (d > 0.5) yes (d > 0.5) no no
stBS yes (d > 0.5) yes (d > 0.2) yes (d > 0.2) yes (d > 0.7)

stWSLS yes (d < 0.45) yes (d < 0.5) yes (d < 0.45) yes (d < 0.65)
SA yes no no no

However, for the BS rule, a single defector surrounded by
cooperators cannot destroy the cluster and so the stochas-
tic BS rule leads to evolution of cooperation for d ≥ 0.2.
In fact, the stochastic version outperforms the deterministic
BS rule. The propagation of defection by single defectors
can also account for the fact that we do not find evolution
of cooperation in grids with IB for a very high initial frac-
tion of cooperators (d = 0.9). Defectors most likely do not
appear in clusters and can therefore exploit all cooperating
neighbors at once, which gives them a high payoff and leads
to defection in their neighborhoods.

5.3 Small-World Networks
In Table 1 we see that there hardly is emergence of co-

operation in small-world networks with the IB rule. This
is especially interesting because the main graph features as
the average degree and its standard deviation are almost
the same as in grids, where the IB rule leads to coopera-
tion. To discover reasons for the differences we have to look
at the clustering coefficient c. c is very high in small-worlds
(c ≈ 27%) in comparison to grids, where c = 0. We have seen
before that well-defined boundaries between groups of coop-
erators and defectors in grids help to propagate cooperation.
The Watts-Strogatz model constructs a small-world graph
starting from a ring. The rewiring process creates shortcuts
between different neighborhoods and can turn inner players
into boundary players if the shortcut links them to defec-
tors. Thus, some small clusters of cooperators that would
have grown in grids cannot grow in small-worlds. Figure 2
gives an example how a slightly higher clustering coefficient
leads to fc = 0 instead of fc = 84% for c = 0.

The final fraction of cooperators usually slightly drops
from the initial fraction in small-worlds. Even if fc increases
slightly over the starting point for medium levels of d, we
do not consider this as evolution of cooperation because the
standard deviation ranges from 0.04 to 0.16. The stochastic
BS rule yields 100% cooperation with small initial fractions
and turns out to be the most successful rule in small-worlds.
Starting from a medium level of d, the deterministic version
leads to evolution of cooperation, too. The deterministic and
the stochastic WSLS yield a medium level of cooperation.

5.4 Random Networks
Random networks are the only network where simulations

with T = 1.1 and T = 1.2 yield different results. How-
ever, we do not consider results for T = 1.1 to be reliable
because of high standard deviations and low convergence
rates. Therefore, we discuss the results for T = 1.2 which
show 100% convergence and a lower σ.

The WSLS rule yields the highest levels of cooperation
in random graphs compared to other networks. The IB rule
hardly leads to cooperation in random networks. The results
for the BS rule are drastic, as fc turns out to be either 0 or
1. We see from the simulation results that the jump occurs
between d = 0.55 and d = 0.6. We will give the explanation
in the discussion of the BS rule. The stochastic version yields
the best result for random graphs.

5.5 The Imitate-Best-Strategy Rule
In all settings, we find that the BS rule does not lead to

evolution of cooperation for any initial fraction, d ≤ 0.5,
whereas it takes place for all d ≥ 0.6. This phenomenon is
extraordinarily strong in random networks, where the final
fraction of cooperators, fc jumps from 0 to 1. Further sim-
ulations indicate that there is a threshold for the evolution
of cooperation that occurs between d = 0.55 and d = 0.65.

We now estimate analytically the threshold value of the
parameter d for cooperation to emerge in scale-free graphs,
small-worlds, and grids, under some simplifying assump-
tions. In our model, each player i has 4 neighbors on av-
erage. Let x be the fraction of cooperating neighbors of a
node i and let each neighbor in N (i) have 4 neighbors with y
the fraction of cooperators in their neighborhoods (i’s two-
step neighborhood) a constant (but need not be the same
as x). We assume that x is representative of the whole net-
work, i.e., the fraction of cooperators in the network at that
round is x. Since the average degree is 4, we assume that
x can take the values 0, 0.25, 0.5, 0.75, 1. Recall that in this
rule, a player decides which strategy to take according to
the wealthiest strategy in its neighborhood. In general, i
will cooperate if

x(yR + (1− y)S) > (1− x)(yT + (1− y)P ) (1)

which is 0.56(0.55) for x = y and T = 1.2(1.1). From Equa-
tion 1, we also find that i will always prefer to play defect
for x ≤ 0.5 (irrespective of the value of y). However, for
x = 0.75, i will play cooperate in every case where y ≥ 0.25
(which is very likely, as x is representative of the whole net-
work). Thus, from this simple analysis, we predict a thresh-
old value of d = 0.55 for cooperation to emerge. Note that
the argument above accounts for a simple average-case be-
cause it assumes the degree of each node to be 4 and an
even distribution of cooperators in all two-step neighbor-
hoods. As the actual x and y for a given neighborhood can
differ from the average we find our simulation threshold to
be slightly different from the predicted value of d = 0.55.

For random networks also, any agent i will cooperate if
Equation 1 holds, i.e., an agent i will cooperate for x ≥ 0.56



when x = y and T = 1.2. Since the average degree is not
4 the calculation of the values of x for which cooperation
emerges is more complicated for x 6= y. Note, that the
number of cooperators in i’s neighborhood follows a binomial
distribution #coop ∼ bin(n − 1, d). Using Equation 1, for
a given x, we can calculate the value of y required for i to
be cooperating. Thereafter using the binomial distribution,
we can compute the probability that such a fraction y will
exist in i’s two-neighborhood. For example, if x = 0.47, y
should be ≥ 0.58. However the probability that y ≥ 0.58
is equal to 0.046. Thus it is unlikely for agent i to play
cooperate. However, for any x ≥ 0.56 cooperation is very
likely. For example, for x = 0.61, y should be more than 0.47
and the probability for y ≥ 0.47 is 0.93. Thus, in this case
also a threshold value of d = 0.56 would ensure cooperation,
which is in good agreement with our simulations.

5.6 The Win-Stay, Lose-Shift Rule
Although the WSLS rule was shown to perform very well

in two-agent settings it has not been investigated in multi-
player settings. An interesting aspect of WSLS is that for
every network, it leads to the same fc irrespective of the ini-
tial d. However, the actual value of fc reached depends on
the type of network. Another surprising aspect is that WSLS
always leads to evolution of cooperation, if d ≤ 0.5 and is
the only strategy to do so across all the types of networks
studied. We note that the update for an agent depends on
the own payoff over time and therefore indirectly on strat-
egy distributions of the neighbors. Furthermore, the rule is
innovative, such that defectors surrounded by defectors are
still able to change to cooperation, which is never possible
in imitating rules. We found examples of how parts of a
network can easily turn from all-defection to all-cooperation
and vice versa in several time steps only.

We note that for the WSLS strategy most of the simula-
tions do not converge. For the deterministic WSLS, we do
not find convergence except in random networks for T = 1.2,
where all runs converge (usually within 20 rounds). How-
ever, even though the runs do not converge, the standard
deviation usually is lower than 0.016. Thus, we can have
reasonable confidence about the correctness of our findings.
We note that this update rule is especially helpful in systems
where one does not have an influence on the initial fraction
of cooperators but wants to ensure a medium level of coop-
eration. The stochastic WSLS yields slightly higher levels
of cooperation in grids, scale-free, and small-world networks
and here also the final fraction of cooperators is constant
(independent of the initial fraction). Here, the standard de-
viation is lower than 0.01.

6. CONCLUSIONS
In this paper, we performed a comprehensive simulation

study of the phenomenon of evolution of cooperation in self-
interested multiagent societies. Our research shows that
general statements on evolution of cooperation in networked
multiagent systems cannot be made. The emergence of co-
operation depends on the type of network, the state update
rule, and the initial fraction of cooperators. We find a high
dependency of final results on the initial fraction especially
in imitating, non-innovative rules. We observe that the evo-
lution phenomenon do not depend on the size of the network
as long as the network is large enough to show its typical
properties and crucial network parameters do not change

with the number of nodes. Our main findings are as follows:

• In scale-free networks, almost all the state update rules
lead to evolution of cooperation. However, the deter-
ministic imitation rule and stochastic imitation rule
of [16] perform better.

• For small-world networks stochastic BS performs best.

• For grids the deterministic IB performs the best and
most stochastic rules (except stochastic BS) do not
perform well.

• For random networks WSLS performs the best.

• WSLS gives the interesting result that for every type
of network we studied, the final fraction of cooperators
reaches a constant value. Further, this is the only rule
that ensures evolution of cooperation for low initial
fraction of cooperators. This result holds across all
types of networks.

• The BS rule also has the interesting property of sup-
porting evolution of cooperation above a threshold value
of initial fraction of cooperators across all networks.

We also find that stochastic versions of deterministic rules
usually perform slightly better. The final results still highly
depend on the network: e.g., rules that work very well in
scale-free graphs do not have to be successful in grids. Fur-
thermore, results for different stochastic rules can vary greatly
in the same setting. In most cases we find them to yield sim-
ilar results as the deterministic versions.

Future Work: In this paper we have considered the PD
game as an interaction model with a fixed topology of in-
teraction. An important future direction of research is to
relax the assumption of fixed topology. Although versions
of this problem has been studied [22], there is no restriction
placed on the topology of the graph, except that it remains
connected. An interesting extension would be to study the
evolution of cooperation in variable topology graph where
the statistical properties of the graph is maintained (i.e., a
scale-free graph remains scale-free). Another future research
agenda is to give a broad understanding of rules and net-
works for emergence of cooperation in the Snowdrift game.
A first glance at pilot simulations also shows different be-
havior for different settings [9].

From the theoretical perspective there are a few inter-
esting directions that can be pursued. The results obtained
from WSLS seem to indicate some universal underlying phe-
nomenon for the rule. Theoretical understanding of why
there is a uniform final fraction of cooperators for WSLS
in a given type of network is an important research direc-
tion. Moreover, here we have prescribed rules and tried to
analyze whether the rules lead to evolution of cooperation.
Designing a rule that guarantees a certain level of cooper-
ation irrespective of the network topology is an important
problem that we wish to pursue.
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Figure 3: Final fraction of cooperators for T = 1.2,
n = 750 and four different networks: scale-free,
small-world, grid and random networks (in this or-
der). Evolution of cooperation occurs where the fi-
nal fraction is above the dotted black line.


