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Abstract The ability to grasp unknown objects still
remains an unsolved problem in the robotics community. One
of the challenges is to choose an appropriate grasp configu-
ration, i.e., the 6D pose of the hand relative to the object and
its finger configuration. In this paper, we introduce an algo-
rithm that is based on the assumption that similarly shaped
objects can be grasped in a similar way. It is able to synthe-
size good grasp poses for unknown objects by finding the best
matching object shape templates associated with previously
demonstrated grasps. The grasp selection algorithm is able to
improve over time by using the information of previous grasp
attempts to adapt the ranking of the templates to new situa-
tions. We tested our approach on two different platforms, the
Willow Garage PR2 and the Barrett WAM robot, which have
very different hand kinematics. Furthermore, we compared
our algorithm with other grasp planners and demonstrated
its superior performance. The results presented in this paper
show that the algorithm is able to find good grasp configura-
tions for a large set of unknown objects from a relatively small
set of demonstrations, and does improve its performance over
time.
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1 Introduction

Autonomous robotic grasping is one of the pre-requisites for
personal robots to become useful when assisting humans in
daily life. Seemingly easy for humans, it still remains a very
challenging task for robots. An essential aspect of robotic
grasping is to automatically choose an appropriate grasp
configuration given an object as perceived by the sensors of
the robot. Developing an algorithm that provides such grasp
hypotheses reliably is hard given the large variety in size and
geometry of objects (e.g. household objects, see Table 1).

Grasp planning in unstructured environments has been
studied extensively in the past. Planners that require exact
object models describing their size and geometry usually
involve sampling methods to generate feasible grasp con-
figurations and choose the one that maximizes a grasp qual-
ity metric (e.g. the metric proposed by Ferrari and Canny
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1992). Usually the quality of grasps is evaluated using sim-
ulators such as GraspIt! (Miller and Allen 2004), Open-
Rave (Diankov and Kuffner 2008) or OpenGRASP (Leon
et al. 2010; Ulbrich et al. 2011) that can execute grasps given
perfect knowledge of the object and its environment. Eval-
uating all possible combinations of object model and grip-
per configuration is computationally intractable. Algorithms
have been proposed that sample this space e.g. by approxi-
mating object shape with geometric primitives (Rubio et al.
2010; Miller et al. 2003; Goldfeder et al. 2007; Przybylski
and Asfour 2010). Other geometric approaches have been
presented that instead of solving the grasp selection problem
for each object in isolation, aim at transferring successfully
executed grasps to novel object models (Ratliff et al. 2007;
Curtis et al. 2008; Goldfeder and Allen 2011).

All these approaches are commonly used to generate a
large database of objects with pre-computed grasps offline.
At run-time, target object and database models are matched
according to some similarity measure. The grasps associated
to the best matching model can then be applied to the target
object. It is important to note that objects in cluttered environ-
ments will usually only be partially perceived due to visibility
constraints induced by a particular viewing direction or by
occluding objects. Matching this partial sensor data against
geometric models in the grasp database is difficult and still
an open research problem. For the case of known objects in
the scene, the problem of object recognition and pose esti-
mation has been adressed e.g. in Huebner et al. (2009) and
Papazov et al. (2012). The shape matching problem for the
case of familiar objects is even harder, i.e. for objects that are
not the same but similar to the objects in the database. To this
end, an interesting approach has been proposed by Goldfeder
and Allen (2011). The authors generate a codebook of shape
features extracted from synthetic depth maps that are gen-
erated from a number of viewpoints around a large set of
object models. Given data from a real sensor, shape features
are extracted and matched against the synthetically generated
one in the database. The most similar one is then retrieved
along with the associated grasps .

We propose to completely avoid relying on geometrical
object models and work directly with sensor data. Thereby
we avoid the problem of matching synthetically generated
with real-world sensor data. To do so, we developed a local
shape descriptor that can be automatically extracted from real
sensor data along with the associated grasp pose. We show
that a rather small set of such shape templates is sufficient to
grasp a large variety of unknown objects.

All the aforementioned approaches for grasp synthe-
sis (Rubio et al. 2010; Miller et al. 2003; Goldfeder et al.
2007; Przybylski and Asfour 2010; Ratliff et al. 2007; Cur-
tis et al. 2008; Goldfeder and Allen 2011) allow to gener-
ate grasps offline for a large number of objects. However,
these grasps are usually computed using idealistic assump-

tions about the contact interaction between the object and the
hand. Balasubramanian et al. (2012) showed that grasps that
are highly ranked according to the often used ε-metric by
Ferrari and Canny (1992) do not perform well when tested
in the real world. Grasps that were demonstrated by humans
were significantly more successful. Following this study, we
show that a small number of example grasps generated from
user demonstrations and linked to local object shape can be
generalised to grasp a large variety of objects.

There are some model-free approaches that propose geo-
metrical features which indicate good grasps as for exam-
ple in Klingbeil et al. (2011), Richtsfeld and Zillich (2008),
Popović et al. (2011), Hsiao et al. (2010) and Stückler et
al. (2011). Hsiao et al. (2010) developed an algorithm that
searches among feasible top and side grasps to maximize
a set of criteria such as the amount of perceived object
mass between the finger tips of a parallel jaw gripper. These
approaches generate a ranked list of grasp hypotheses suit-
able for execution on a robot. Their advantage is that no
supervised learning is required, but on the other hand rank-
ing of grasp hypotheses is fixed and does not adapt over time.

Methods have been proposed that learn the success rate of
grasps given a descriptor extracted from sensor data. These
require large amounts of labeled training data which can be
acquired either by evaluating grasps on a real robotic sys-
tem (Montesano and Lopes 2009; Detry et al. 2010; Erkan et
al. 2010) or from synthetic sensor data with a manually cho-
sen label (Boularias et al. 2011; Bohg and Kragic 2009; Stark
et al. 2008; Saxena et al. 2008). Learning in these approaches
is often restricted to 3D grasp points or 6D grasp poses rather
than to a full gripper pose and finger configuration. Thus,
grasps are executed for a fixed finger configuration which
restricts the types of objects that the robot is able to grasp. The
algorithm of Saxena et al. (2008) learns complete hand con-
figurations rather than only 3D grasp points. Their approach
learns grasp hypotheses from many synthetic images of
objects annotated with appropriate grasp locations and
recorded from several viewing angles. However, this method
requires to work around the discrepancy of the synthetically
generated images and images taken with real robots.In our
algorithm sensor data is used directly to learn grasps.

Recently, interesting approaches have been presented that
match object parts extracted from sensor data against new
objects. Kroemer et al. (2012) define a part by weighted sum
of Gaussians around points of the object’s point cloud. The
weights are modelled as an isotropic Gaussian centered at
a manually-chosen subpart frame. Based on this, a kernel
function is defined that evaluates the similarity between two
subparts. This can then be used to find a so-called affor-
dance bearing subpart on a new object. The selection of this
part is improved over time by trial-and-error. Rather than
grasp poses, this method generates full trajectories for a spe-
cific task. An evaluation is shown on only a few objects
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grasped at a handle. Detry et al. (2013) match hand sized
point cloud parts, extracted from user demonstration, against
new objects. They show impressive generalisation results on
a set of household objects. However, their approach requires
detailed object models during training. Hand poses can only
be taught from a fixed set of finger configurations.

In a previous contribution (Herzog et al. 2012) we showed
preliminary results on a novel grasp selection algorithm with
following favorable characteristics:

– We propose a local grasp shape descriptor, which encodes
hand-sized regions on the object that are suitable for
grasping.

– Appropriate grasp poses together with finger config-
urations can be taught through kinesthetic teaching.
Instances of the shape descriptors are then stored to
describe the grasped object part (Fig. 1).

– Graspable object parts on unknown objects can be recog-
nized by matching shape templates from demonstrations.
Associated grasps can then be applied to the new situa-
tion.

– In addition our algorithm is able to autonomously
improve the ranking of generated grasp candidates over
time based on feedback from previous grasp executions.

– The approach is not restricted to a particular hand kine-
matic and can be applied in principle to any end-effector.

In this paper we will provide a more elaborate analysis com-
prising the following:

– The proposed method is described in more detail and
a discussion on possible extensions of the algorithm is
provided.

– We introduce a new distance measure and evaluate it
together with the one proposed in our previous contri-
bution.

– Experiments are extended with a comparison between
our grasp planner and two state of the art approaches.

We exploit the assumption that the part of an object that is
in contact with a hand is most important for the success of a
grasp. Although, there might be more factors that influence
the choice of a good grasp, (e.g. its surface, weight or inertia
properties) we will show that local shape parts provide a
major feature for successful grasp selection. For example, a
pen can be grasped from the table with a strategy similar to
that used to grasp a screwdriver of the same size. Compared to
holistic shape representations, a part representation is capable
of better generalization, because parts of the object that are
not in contact with the hand can be ignored for matching. A
hand-sized part captures larger regions than local descriptors
(e.g. edge, corner or SIFT) and thus is more expressive and
less likely to lead to poor matching performance.

Recently, templates have been successfully used to encode
local regions of terrains enabling a quadruped robot to choose
good footholds (Kalakrishnan et al. 2009). In Kalakrishnan
et al. (2009), templates have been used to encode terrain
heightmaps. In contrast, in our work, we use templates to
encode object heightmaps that are observed from several
approach directions. We store known object shapes repre-
sented by templates together with feasible grasp configura-
tions in a library. To obtain good grasp hypotheses for novel
objects, our algorithm samples and compares shape patches
to those patches in the library and retrieves the associated
grasp configuration for the best match. An initial set of object
shapes can be acquired by demonstrating feasible grasp con-
figurations for a particular set of objects to the robot and store
them as a template associated to a grasp pose. A grasp con-
figuration is given by a six DOF end effector pose as well as
the joint configuration of the robots gripper.

In Sect. 2 we explain our algorithm. The results are pre-
sented in Sect. 3. We discuss our approach in Sect. 4 and
finish with a conclusion in Sect. 5.

2 Template-based grasp selection

In the following, we explain the single components of our
planner as they are illustrated in Fig. 2. In Sect. 2.1, we
describe the proposed object part descriptor, in the follow-
ing referred to as the grasp heightmap. We compute a set of
candidate heightmaps on an object as explained in Sect. 2.2.
Section 2.3 describes how heightmaps are extracted in detail.
Specific instances of the descriptor are stored as templates
into a library. In Sect. 2.4 we show how positive examples
are learned from user demonstration. Two distance metrics
between candidate heightmaps and library templates are pro-
posed in Sect. 2.5. The ability of our algorithm to learn from
failed grasp attempts is described in Sect. 2.6.

2.1 Grasp heightmaps

Our shape descriptor, the grasp heightmap, is directly
extracted from point clouds as captured by a 3D sensor,
e.g. a Microsoft Kinect. We assume that the object lies on
a flat support surface to simplify segmentation of the object
from the background. To extract our shape descriptor, we
find a tangential plane on the object point cloud and measure
the distances between a rectangular region on this plane and
points from the point cloud. This will be described in more
detail in the next section. The tangential plane is parameter-
ized by its normal which we call we describe the proposed
object part height-axis. We rasterize the rectangular region
and store the measured distances, so called height values,
into its tiles (see Fig. 3).Therefore, a heightmap also stores
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Fig. 2 Overview of the presented algorithm. a A 3D point cloud show-
ing the object with background as it is perceived by the robot. The object
(yellow point cloud) is segmented out from the table (yellow rectangle)
for further processing. b The convex hull of the object point cloud (red
polygon mesh) is used as approximation of the surface to compute a
set of normals (green lines). These normals are used as height-axes in
order to extract heightmaps. c Three heightmap candidates extracted
from the object relative to various (purple) height-axes. d Candidates

are matched against template heightmaps in the grasp library to look-up
good grasp configurations. e The matching cost provides a ranking for
the resulting hand configurations. If a grasp attempt fails, feedback is
returned to the grasp library and incorporated in successive matching
steps to adapt ranking. f New grasps are added by user demonstrations
to the grasp library. Each template l is stored together with the hand
configuration gl and a set Fl of negative templates from failed grasp
attempts (Color figure online)

height values measured from regions surrounding the object.
We distinguish four different region types:

– Regions on the object surface describe the shape of the
grasped object part and are to be enclosed by the hand.

– For a grasp configuration it is desirable to avoid prema-
ture contacts with the object. Thus, fingers need to sweep
into void regions.

– Collisions between hand and background should be
avoided.

– Regions that cannot be determined as one of the previous
types due to occlusion are also encoded.

Hence each tile t in a grasp heightmap T contains a height
value labeled with a region type and is defined as

t ∈ T = R × S, S = {s, v, o, b},
where s, v, o and b stand for surface, void, occlusion and
background. A grasp heightmap with a granularity of n × n
tiles is then defined as a vector c ∈ T n2

with height value
components ci ∈ R, i = 1 . . . n2 and region types ĉi ∈ S.
The compact representation in form of a two dimensional grid
has the advantage that matching can be performed quickly.
The width of heightmaps is set according to the hand in
use. We associate a hand pose to a heightmap in order to

Fig. 3 One example heightmap extracted from the point cloud of a
card box. Height values (small black arrows) are measured relative to a
tangent plane (indicated by the black line Z ). The plane is perpendicular
to the height-axis h. Tiles of type surface (green) are extracted from
the object surface. Tiles of type background (red) describe the height
between Z and the table. Void regions (blue) are clamped to the limits
of the bounding box of the hand. Tiles of type occlusion store the height
of the upper bound of an occluded region. They depend on the viewing
direction v and the detected object surface (Color figure online)

clamp exceeding height values to the bounding box of the
hand. Heightmaps are extracted from perceived point clouds
as illustrated in Fig. 3 and described in more detail in the
following.
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2.2 Heightmap search space

Before height values can be extracted, it is necessary to define
the heightmaps coordinate frame relative to the object, i.e.
a height-axis at a point on the object and a rotation around
it. To make the algorithm computationally efficient, we limit
the search space of these coordinate frames. Therefore, we
compute height-axes that are perpendicular to the object sur-
face. A rough approximation of the surface is obtained by
computing the convex hull of the object point cloud. For each
polygon of the resulting mesh we use the center to compute a
height-axis as shown in Fig. 2b. The rotation around a height-
axis is discretized into r steps resulting in r heightmaps per
polygon. Hence, the number of computed heightmaps is the
number of polygons of the convex hull times r . We ignore
polygons with normals pointing away from the viewpoint. As
they are extracted from a convex hull, they are on the back-
side of the object relative to the viewpoint. Approaching the
object from such a direction usually results in a kinematically
infeasible grasp.

2.3 Extracting heightmaps

Given a coordinate frame for a heightmap relative to the
object point cloud, the next step is to extract the height val-
ues and region types as shown in Fig. 3. For this, the point
cloud is transformed into the heightmap’s coordinate frame.
We assume that a segmentation of the object point cloud is
given and points are labeled as either object or background.
In the following, the computation is done in three steps.

First, surface regions are labeled. We iterate through all
object points p and project them down onto the plane Z to
find the according tile. The distance between p and Z is the
height-value and it is stored together with region type s. An
example is point p1 in Fig. 4. If several points get projected
onto the same tile, the highest value is stored.

In the second step, we iterate through the remaining tiles
and classify them as either void or occlusion. We say that
a point p occludes a straight line S, if p ∈ conv({v} ∪ S),
where conv(·) is the convex hull of a set of points and v is
the robot’s view point. In practice we apply a threshold on
the distance between p and conv({v}∪ S). We consider a tile
as void if the straight line S, defined by the tile center and the
height-axis, is not occluded by any point from the object. For
instance consider S1 in the figure. It is not occluded by any
of the points. In that case we set the tile to void and bound
the height value by the gripper bounding box. If a point,
however, occludes S, we compute the line of sight, defined
by the position of the camera v and the occluding point p.
In our example in Fig. 4 we have p1 ∈ conv({v} ∪ S2) and
the according line of sight is the dashed line crossing v. The
distance between Z and the intersection of the line of sight

Fig. 4 Illustration of heightmap extraction procedure as described in
Sect. 2.3

with S is stored in the tile. Again, for each tile the highest
value is stored.

In the last step background tiles are set (e.g. p2). Similar
to the first step, we compute distances between Z and points
labeled as background. We overwrite tiles with the according
height and type background, if the new height value is bigger
than the current one (e.g. p2 in the figure is higher than p3).
In our case, we can assume the table to be a surface and
speed up computation. For each tile we just need to find the
intersection of the table and S to compute the height value.
However, in general the background can have any shape.

For our experiments, we use a naive implementation where
for each tile, we iterate through all points. However, using
ray-tracing on a voxel grid could speed-up the procedure.

2.4 Learning good grasp configurations from demonstration

An initial set of grasp configurations can be learned from
demonstration through kinesthetic teaching. To add a good
grasp configuration to the library, the user is required to move
the robot’s hand to a favorable grasp configuration as shown
in Fig. 1. The proposed method then automatically extracts
the heightmap on the convex hull, which is closest to the
robots palm. It is stored as positive template together with the
demonstrated finger configuration and hand pose relative to
this template into the library. Thus, each library entry consists
of an extracted template heightmap l ∈ T n2

, an associated
hand pose gl ∈ R

6 and a finger joint configuration. Decou-
pling the hand pose from the heightmap frame allows us to
reduce the search space for heightmap frames as described
in Sect. 2.2 without restricting possible hand poses. We want
to emphasize that for extending the robot’s grasp repertoire,
these grasp configurations can be taught by a user who is not
required to have any expert knowledge.
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2.5 Distance metrics

A crucial part of our template matching approach is comput-
ing the distance between heightmaps. As discussed in more
detail in Sect. 4, it is non-trivial to design a metric that weighs
in the grasp-relevant differences between heightmaps. We
designed and evaluated two different metrics. The first dis-
tance measure was proposed in our previous work (Herzog et
al. 2012) and is described in Sect. 2.5.1. The second distance
measure is described in Sect. 2.5.2. For both methods we refer
to candidate heightmaps as c ∈ T n2

and to library templates
as l ∈ T n2

(associated to a hand pose gl). The bounding box
of the gripper relative to gl is expressed in the coordinate
frames of c and l in order to bound height values. Tiles with
exceeding values are set to type void. A comparison of both
distance measures is provided in Sect. 3.

2.5.1 Distance measure A

We define the distance measure between a candidate height-
map c and a library template l according to (i) over-
lap of region types and (ii) geometric information of the
heightmaps. For the latter we use a weighted �1 distance
over the height values:

sσ =
n2∑

i

Wĉi ,l̂i
|ci − li | , Wĉi ,l̂i

=
{

w1 if ĉi = l̂i = s

w2 else
(1)

where Wĉi ,l̂i
puts a higher weight on surface regions and

a lower weight on the remaining region combinations, i.e.
w1 > w2. We take additional information from region
segmentation into account by counting overlapping surface
regions in the two heightmaps. The number of tiles in a
heightmap c labeled as region type j ∈ S is expressed as

# j (c) =
∣∣∣{i | ĉi = j, i = 1 . . . n2}

∣∣∣ . (2)

For overlapping tiles of a type j ∈ S in two heightmaps

c, l we write # j (c, l) =
∣∣∣{i | ĉi = l̂i = j, i = 1 . . . n2}

∣∣∣. This

allows us to define an overlap measure

oσ = max{#s(c), #s(l)}
#s(c, l)

. (3)

The objective is to maximize overlap of surface regions.
Since heightmaps may represent differently sized objects,
we normalize for the number of surface tiles in the numera-
tor of Eq. (3). The distance between c and l then is defined
as

σ(c, l) = oσ sσ . (4)

The lower σ(c, l) is, the more similar are c and l to each other
according to geometrical shape and region overlap. Note that
for Distance Measure A we only distinguish between surface

regions and the remaining three types. We will now present
a measure that takes all four types into account.

2.5.2 Distance measure B

In Eq. (3) overlap is inversely proportional in the number of
overlapping surface tiles #s(c, l). Thus for heightmaps with
small surface regions (e.g. small objects) the region distance
oσ varies strongly with overlapping surface tiles. This makes
it less likely to match small object parts to each other, when
heightmaps are slightly misaligned. To reduce sensibility to
noise we tried a region distance that is additive in the number
of overlapping tiles,

oκ = 1

n2

∑

j∈S

k j (max{# j (c), # j (l)} − # j (c, l)),

with region dependent weights k j ∈ R. Here we take over-
lap of all region types into account while oσ only accounts
for surface regions. For the shape distance presented in this
paragraph we use a �1 distance

sκ = 1

n2

n2∑

i

|ci − li | .

We combine the two measures to a distance

κ(c, l) = k0sκ + oκ , (5)

where k0 is a weighting parameter that is necessary to account
for different magnitudes in the two summands. The advan-
tage of this distance measure to the one presented in Eq. (4)
is that there are no multiplicative terms between shape and
region types. This way parameters are easier to chose. In
Sect. 3 we evaluate the performance of the distance mea-
sures presented in this section.

2.6 Matching cost

The objective of the matching cost function, described in this
section, is to express the dissimilarity between a candidate
heightmap and a positive template. Additionally, it has to
incorporate experience from failed grasp attempts in form
of negative templates. Heightmaps from failed attempts are
considered for feedback by extending the grasp library such
that a set Fl ⊂ T n2

of failures is added to each positive
library template l. If a candidate heightmap was matched to
l and the related hand pose gl led to a failed grasp attempt,
the candidate heightmap is added as negative template to Fl.
Feedback is not applied globally to all library templates as it
is related to a particular hand pose gl. Example matches are
shown in Fig. 5.

In the following we would like to describe a function that
evaluates the matching cost between a candidate heightmap
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Fig. 5 The bottom row shows
candidate templates from
unknown objects; the top row
shows the corresponding best
match to the templates contained
in the library. The purple arrows
show the height-axes of the
templates (Color figure online)

and a positive template under consideration of negative exam-
ples. It is composed of three distances

σ(c, l),

β(c, Fl) = min{σ(c, fi) | fi ∈ Fl},
γ (l, Fl) = min{σ(l, fi) | fi ∈ Fl},

where σ from Eq. (4) can be replaced by κ from Eq. (5). If
Fl = ∅, then β = γ = ∞ (initial state of the grasp library
after demonstration). In addition to the distance between can-
didate and positive template, expressed by σ , the distance to
the closest negative template β is taken into account. The
objective is to avoid choosing candidates that are close to
templates which led to failures in previous grasp attempts. γ
is a robustness measure for l. The higher it is, the more robust
is l to shape variation. These three competing measures are
combined in the following function

m(c, l, Fl) = σ[
1 − exp

(−k1β2
)] [

1 − exp(−k2γ 2)
] , (6)

which yields a matching cost for a candidate heightmap
c ∈ T n2

with a positive library template l ∈ T n2
by

also incorporating feedback from negative templates Fl. The
lower m(c, l, Fl), the better c and l match.

fki (x) = 1 − exp(−ki x2) is a sigmoid shaped function
of x ∈ R with shape parameters ki , i = 1, 2 (see Fig. 6).
It was chosen because of two favorable characteristics. The
first one can be described by the following example. Let σ

and β have small values for some c, l, fi , which means that
the candidate is similar to a user demonstration but also to
a negative template that has previously led to a failed grasp.
In this case, the matching cost should have a high value. By
choosing fki (x) to be of sigmoidal shape, the desired behav-

Fig. 6 Functions f3(β) and f10(γ ) used for the matching function m

ior of limβ→0
σ

fki (β)
= ∞ is achieved. Furthermore, fki (x)

does not grow significantly for x � 0. This is favorable,
because increases in already high values for β or γ should
have less influence on the matching cost than changes in σ .
The functions f3(β) and f10(γ ) are shown in Fig. 6. In our
experiments we realized that k1, k2 can be set to 1 when using
the distance measure in Eq. (5).

This matching is applied for each pair of candidate and
library template under consideration of negative templates.
The resulting matching costs m(c, l, Fl) provide a rank-
ing among candidate heightmaps. Hand poses that come
with matched templates are transformed into the coordi-
nate frames of candidate heightmaps. Starting with the high-
est ranked grasp the planer excludes kinematicaly infeasible
grasps until it finds a valid one for execution. Let |C | , |L| be
the number of candidate heightmaps and library templates,
respectively. Then, the matching process requires |C | × |L|
evaluations of Eqs. (4) or (5) (depending on the choice of dis-
tance measure). Additionally, the distances need to be eval-
uated |C | × ∑

l∈L |Fl| times to compute β(c, Fl). Adding
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a new negative template requires updating γ (l, Fl), which
is one evaluation of Eqs. (4) or (5). To add a new user
demonstration, no updates of the matching costs need to
be performed. It should be possible to further reduce the
library for better scalability (e.g. with clustering techniques),
but our experiments showed that already a relatively small
library of templates performs well on a challenging test-set
of objects.

3 Results

The grasp selection algorithm was evaluated on two differ-
ent robots with different hand designs. On each of them,
two kinds of experimental setups were used to evaluate (i)
the quality of retrieved grasp hypotheses and (ii) the ability
to improve such hypotheses from trial and error. We com-
pared our approaches to two baseline methods. The proposed
algorithm was evaluated using the two distance measures
presented in Sect. 2.5. To initialize the grasp library, a user
demonstrated grasps on a training set of objects. During the
experiments objects from a test set were placed in front of the
robot on a table one at a time. A ranked list of grasp hypothe-
ses was created by the planner. The best that was reachable
was chosen and applied to the test object. We evaluated our
algorithm on different data sets consisting of objects with a
large variety.

3.1 Experimental setup

The two robots used for our experiments (see Fig. 7) have
very different hand designs. They are described in the remain-
der of this paragraph together with details about the imple-
mentation of our algorithm.

3.1.1 Willow garage PR2

The Willow Garage PR2 is a robotic platform, used for
research on service robotics (Bohren et al. 2011). For 3D
point cloud extraction, we used a head-mounted Microsoft
Kinect. (see Fig. 7). The proposed algorithm was integrated
in the pr2 tabletop manipulation pipeline.1 The robot has a
parallel jaw gripper consisting of two fingers and a single
DOF for controlling the aperture of the fingers (see Fig. 8).

3.1.2 Barrett WAM robot

Furthermore, the proposed approach was evaluated on a Bar-
rett WAM robot2 with a WAM arm and the Barrett Hand

1 http://www.ros.org/wiki/pr2_tabletop_manipulation_apps/.
2 http://thearmrobot.com/aboutRobot.html.

Fig. 7 The Barrett WAM robot with a WAM arm and a Barrett Hand
together with a head-mounted Asus Xtion (left) and the Willow Garage
PR2 with a pair of parallel jaw gripper and a head-mounted Microsoft
Kinect (right)

BH280 (see Fig. 7). A head-mounted Asus Xtion sensor has
been used to obtain point clouds. The Barrett Hand is differ-
ent from the PR2 gripper. It has three fingers, each of them
having one actuated DOF. An additional DOF controls the
spread between the left and right fingers resulting in four
actuated DOFs (see Fig. 9). The grasp planner was embed-
ded into the manipulation architecture, presented by Righetti
et al. (2013). The gripper pose was adapted by hybrid force
and position control using the 6-axis force torque sensor in
the wrist of the hand. A desired force of −1 N along the
approaching direction was set to guarantee contact between
the palm and the object. A desired torque of 0 Nm for pitch
and yaw was set to adapt for slightly miss-oriented grasp
poses which lead to premature contact with the table. These
settings were set globally for all the experiments on the WAM
robot.

3.1.3 Implementation

The grasp planner was integrated in the planning and con-
trol framework of both robots using ROS3(Robot Operating
System). Parts of the tabletop object detector (e.g. described
in Hsiao et al. 2010) were used to segment the object from
the table and execute grasps. We use a simple segmentation
algorithm that fits a plane into the point cloud and subtracts
points that are close to it. Then a mean shift algorithm is used
to cluster the remaining points based on their projection onto
the fitted plane. An interface to PCL4 (Rusu and Cousins
2011) (Point Cloud Library) in ROS was used to compute
convex hulls of point clouds as described in Sect. 2.2. An
implementation of the algorithm is publicly available.5

3 http://www.ros.org.
4 http://www.pointclouds.org.
5 https://github.com/usc-clmc/usc-clmc-ros-pkg.
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Fig. 8 Subset of the achieved grasps on the test set on the PR2

Fig. 9 All demonstrated grasps on the WAM robot (left) and a subset
of the achieved grasps (right). Depending on the size and shape of the
training objects, the user demonstrated finger spread and finger posi-
tions accordingly. When e.g. grasping the shovel, the robot recognized
the cylindrical middle part being similar to the flashlight and applied
the demonstrated gripper configuration (middle row, second from left)

successfully. On the other hand grasping the canteen required the fin-
gers to be widened as the body of the object is bigger than that of the
shovel. In this case the algorithm successfully applied the grasp taught
on the leather bag (upper row, second from left). Situation dependent
the algorithm chose different finger configurations suited for grasping
the unknown objects

We evaluated the algorithm with the two different dis-
tance measures as presented in Sect. 2.5. When using Dis-
tance Measure A from Eq. (4) we set w1 = 50, w2 = 12.
This way we give more importance to tiles that encode object
surface. Parameters in the matching function in Eq. (6) were
set to k1 = 3, k2 = 10. For Distance Measure B in Eq. (5)
we set kv = kb = 1.0, ks = 2.0 to give more importance on
overlap of surface regions, ko = 0 to express missing infor-
mation about occluded regions and k0 = 500 to make the
two summands of Eq. (5) have roughly the same magnitude.
The values for the matching function in Eq. (6) were sim-
ply k1 = k2 = 1. The granularity of heightmaps was set to
n = 30 and we computed r = 16 heightmaps for each height-
axis. Although hand designs of the two robots are quite dif-
ferent, the only parameter that had to be adapted was the size
of templates, because it was fitted to the bounding box of the
gripper. For the PR2, templates were of size 15 cm×15 cm
and for the Barrett Hand they were of size 25 cm×25 cm.
For all the other parameters, we used the same set of values
for both robots.

3.2 Generalization from demonstrated grasps

For the first experiment a user demonstrated 15 grasps on
a training set of seven objects to the PR2 as described in
Sect. 2.4. For this gripper design, maximum aperture size
was chosen for all demonstrations. The trained algorithm was
tested on a set of 38 differently shaped objects (see Table 1a).
They were placed in different orientations to vary the view-
point on the object. After grasping and lifting the object, the
robot waited a few seconds to see if the object slipped due
to a bad grasp. A particular grasp was considered a success
if the robot was able to lift the object off the table, indicat-
ing a stable grasp. Using the presented grasp planner, the
robot achieved a success rate of 87 %, i.e. 83 out of 95 grasp
hypotheses lead to a stable grasp. A subset of the achieved
grasps are shown in Fig. 8 as well as in the video supple-
ment.6 The results indicate that the template representation

6 A short summary of the grasping experiments is also shown at http://
www.youtube.com/watch?v=C7_xVxu8_RU.
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Table 1 Summary of conducted experiments

Training set Test set Method Success(%) Fail Infeasible

a) Distance A, no
feedback

83(87%) 12

b) Distance A, no
feedback

44 (70%) 17 2

c) Distance B, no
feedback

43 (72%) 11 6

d) Hsiao et. al. 37 (62%) 11 12

e) Distance A,
with feedback

41 (82%) 9

f) Distance B,
with feedback

20 (83%) 4 0

g) PCA planner 17 (71%) 7 0

(a)–(d) show experiments on the PR2 and (e)–(g) on the WAM Robot. We use our approach together with either of the two distance measures
described in Sects. 2.5.1 and 2.5.2. Baseline approaches different from the one presented in this paper are evaluated as well: (d) Hsiao et al. (2010)
and (g) the “PCA Planner” as described in the text. The rightmost column encounters attempts when the planner could not find any feasible grasp.
This was caused mostly by big objects for which the intersection of feasible approach directions and the robots workspace did not include good
grasps

is able to generalize from only 15 demonstrations to a large
variety of objects. It also indicates that the algorithm is robust
against different viewpoints on the object since the pose of
the objects was varied. A few attempts failed due to slightly
miss-oriented grasp poses or hypotheses that collided with
the table in a way that premature contact with the object could
not be avoided.

A different training-set set was chosen to demonstrate six
gripper configurations on four objects to the Barrett Hand
as shown in Table 1e. The robot executed five grasps on
each of 10 test-objects resulting in 50 grasp executions. Dif-
ferent from the previous experiment, feedback from a user
was exploited after each trial. Whenever a grasp succeeded,
the object pose was varied. After unsuccessful attempts we
placed the object in the same pose as before for the next out of

the five trials. The algorithm computed grasp hypotheses that
resulted in 41 out of 50 successful trials as shown in Table 2.
In case of an unsuccessful grasp attempt, the robot achieved
to grasp the object in the same orientation after at most two
additional trials using feedback from the previously failed
attempts. The results showed that depending on the object to
grasp, different finger configurations where required which
was computed correctly most of the time by our planner.

3.3 Comparison of different approaches

In the experiments in Table 1b–d, we evaluated the perfor-
mance of our algorithm using the two different distance mea-
surements as described in Sect. 2.5 and compared the perfor-
mance to the grasp planner presented by Hsiao et al. (2010).
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Table 2 Grasp attempts on a WAM robot with Barrett Hand

Object Success rate

Spray Can 4/5

Pipe 4/5

Flashlight 4/5

Shovel 3/5

Phone Handle 5/5

Toy Wheel 3/5

Box 4/5

Red Spray Bottle 5/5

Canteen 5/5

Duster with Pan 4/5

Overall 41/50

We added big objects to the data set comprising some boxes,
file folders and a pelican case. This makes grasping more
difficult, because the gripper can fit only parts of the objects
which the grasp planner is required to find. Also these parts
are often occluded. As can be read from Table 1, the results
of the three methods all show a good performance on this
difficult data set with a slight tendency towards a better per-
formance by our approach. We noticed that the approach
by Hsiao et al. works reliably on smaller objects, but often
has problems to find feasible grasps on bigger objects, since
it only considers a limited number of approach directions
and the workspace of the robot is limited by the big objects.
Splitting the results into bigger and smaller objects shows
that their approach performs similar to ours on hand sized
objects, whereas we see a performance difference when only
big objects are considered. Also their planner is specific to the
parallel jaw gripper of the PR2, where our planner is not spe-
cific to a hand design and can also be used with more complex
hands. Although both distance measures (see Table 1b, c) per-
form equally well, we prefer distance measure B, because it
has fewer parameters to be set and those are easily chosen.

For the WAM Robot, we implemented a simple grasp plan-
ner as a baseline that is similar to the one described by Stück-
ler et al. (2011). We perform a principle component analysis
on the object point cloud and pick the axis with the largest
principle component. We place the desired gripper pose such
that it encloses this axis at its center. We generate 32 grasps
by rotating the grasp pose around the axis. Poses for which
fingers are not colliding with the table are ranked higher. The
results are shown in Table 1g. We executed four grasps on
each of the test objects in different poses. A similar exper-
iment was done with our approach (see Table 1f). Different
to the “PCA Planner”, we exploited feedback after each trial
and in case of an unsuccessful attempt we made the robot
grasp the object in the same pose for the next execution.
Our method always achieved to compute a successful grasp

after at most two failed attempts, summing up to 4 failed
and 20 successful grasps. The baseline “PCA planner” per-
formed surprisingly well on small objects that fit entirely in
the robots hand. However, big objects (the tire and the carton
box) required the robot to grasp specific parts of the objects
rather than the center of the point cloud, such that our planner
outperformed the baseline planner. It chose object parts that
were similar to user demonstrations and resulted in success-
ful grasps.

Overall these experiments showed that our planner per-
forms at least as well as the two model-free baseline plan-
ners. However, we saw that for grasping bigger objects, that
are graspable only on few sub parts of the object, our plan-
ner is able to make a better decision on where to grasp suc-
cessfully. Also both baseline planners were specific to the
robot hands, but our approach is suitable for both without
re-parameterization. The good performance of both distance
measures A, B indicates that our algorithm has some robust-
ness towards the choice of similarity metric.

3.4 Improvement over time

In another experiment, we want to test if the grasp planner
is able to improve over time. We ran a sequence of grasp
executions on one object. After each grasp, the algorithm
was informed about failure or success and the object was put
in a different pose. On the PR2 a whiteboard marker and a
spray can were used for this evaluation in two separate runs.

The robot tried to grasp the whiteboard marker 34 times in
a row. Although grasping failed quite often in the beginning,
the algorithm could increase the overall success rate over 30
percentage points as shown in Fig. 10. The first trials failed
mainly because of grasp poses that led to premature contact
with the object. However, for the last trials the PR2 tended to
approach the object perpendicular to the table surface such
that premature contact was avoided and the grasps succeeded.

The robot showed a similar improvement on the spray can.
Here an additional difficulty was the lower part of the object
which is bigger than the gripper and thus is not graspable.
For this experiment we used distance measure B from Eq. (5)
and the training set shown in Table 1b. First the spray can
was put in 8 poses standing and then in eight poses lying. We
repeated poses from failed grasps up to three times. After the
first run we had a success rate of 55.6 % and improved to
88.9 % in the second run. The results show that the presented
algorithm is able to improve ranking over time using a simple
form of feedback.

The same experiment was conducted with the Barrett
WAM where the robot tried to grasp a rock shaped object 40
times in a row (see third image from left in the bottom row
of Fig. 9). As shown in Fig. 10, success rate was increased
from 30 to 60 %. For the first trials the robot chose the grasp
configuration that was taught on the bowl as shown in the
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Fig. 10 Success rate with
increasing number of grasp
trials using feedback from failed
attempts. After each grasp the
ratio of successful grasps in the
previous ten executions is
computed. Results on a PR2 and
a whiteboard marker (left) and a
WAM robot and a rock (right)

bottom left image in Fig. 9. This made the rock slip away
quite often. However, the ranking of grasp hypotheses was
changed over time in a way that the configuration demon-
strated on the leather bag was chosen more often. This led to
more stable grasps and increased the success rate.

The time for computing a ranked list of grasps was
between 5 and 30 s, when the algorithm was executed
together with other tasks on the on-board computer on the
PR2. However, our implementation of the planner leaves
space for computational speedup.

4 Discussion

In the following we discuss the advantages and drawbacks
of our approach and present future research directions to
improve the algorithm.

4.1 Distance metric

A crucial aspect of our template-based approach is the dis-
tance metric in the space of heightmaps T n2

. Unfortunately,
designing a metric by hand that leads to the desired behav-
ior is non-trivial. Height values and region types cannot be
treated independently. Consider for instance parts of two
heightmaps labeled as void. For both, height values are
bounded by the same bounding box and thus lead to perfect
shape matching. If one would match shape without taking
into account region types, this would lead to a preference
of heightmaps with large void parts. Besides the shape of
two templates it is required to measure overlap of regions.
However, overlap is not necessary for all types. While it is
desired to match surface regions, it is not necessary to have
overlap of background regions. Background only needs to
be avoided by the gripper but not necessarily matched. A
similar situation occurs with occlusions. It is not desirable
to achieve an overlap between regions of which we have
no shape information. For these reasons, we analyzed two
distance metrics that vary in the way heightmap shape and
region are coupled. Finding a distance measure that takes the

characteristics of heightmaps into account was an important
component to make our approach work. Ideally a distance
measure should be learned, e.g. with supervised learning.
Heightmap tuples considered as similar could be collected
by a user and exploited for learning. This has to be investi-
gated in future work.

4.2 Using experience from success

In our algorithm, we acquire positive templates from user
demonstrations and improve matching by including negative
templates in the library. In the following, we would like to
discuss why we exploit experience from failures but do not
try to improve matching using successful grasp executions.

The core assumption underlying the proposed algorithm
is that similar objects can be grasped in the same way. Of
course, the success of a grasp depends also on other physical
characteristics of the hand and object, but for the development
of this algorithm and the following discussion, we focus on
geometrical properties. Let c be a candidate heightmap and
l a library template that describe shapes of object regions.
Furthermore, let gl be a hand configuration known to result
in a successful grasp on l. Then, we can formalize the afore-
mentioned assumption as

(c, l are similar) ∧ (execution of gl on l succeeds) ⇒
(execution of gl on c succeeds).

When a grasp fails on candidate heightmap c, i.e.¬(execution
of gl on c succeeds) and we know that it succeeded on tem-
plate l, i.e. (execution of gl on l succeeds), then from the
rules of induction, we imply that c and l were not similar.
Therefore, we can re-write the above expression as

¬(execution of gl on c succeeds) ⇒ ¬(c, l are similar). (7)

Equation 7 implies that a candidate heightmap c that led
to a failed grasp attempt can be used to learn that c and l
are not similar. However, we cannot exploit the logic propo-
sition to infer information about similarity from successful
trials. To clarify this, consider the following example: let c
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describe the top of a cup that is placed normally on a table.
Let l capture the bottom of a cup that is placed upside down
on the table. The heightmaps describe two different shapes,
but the same overhead grasp can be successfully applied in
both situations. Thus, the implication that the heightmaps are
similar would be wrong and positive feedback would be mis-
leading. Hence similarity matching cannot be improved from
positive feedback and this is why in the proposed approach
only feedback from failed attempts is used.

Instead of including positive heightmaps for improvement
of matching, one could think of acquiring positive templates
autonomously. After a positive execution, a template could
be stored along with user demonstrations into the library.
However, this might lead to an undesirable effect. A newly
added template might be very similar to an existing entry
with the difference that the existing entry might already
have a set Fl of negative feedback attached to it. Since
the newly added template does not have negative feedback
attached, previously experienced bad candidates can again
be matched with a low cost. To make this approach work,
clustering techniques may be applied to avoid storing the
same template multiple times. This would also provide better
scalability.

5 Conclusion

In this paper we proposed a model-free grasp planning algo-
rithm. We introduced a local shape descriptor that encodes
good grasp regions of object parts for grasp selection.
Our algorithm can extract these shape descriptors, called
grasp-templates, directly from sensor data. A set of pos-
itive examples can be learned from demonstration. These
grasp-templates are matched against perceived point-clouds
of unknown objects to generate a list of grasp hypotheses.
We showed that a relatively small set of demonstrations is
sufficient to compute good grasps on a set of objects with
a large variety of shapes. This indicates that the proposed
shape templates are able to capture point-cloud features rel-
evant for model-free grasping. Furthermore, we showed that
both experimental platforms, the Willow Garage PR2 robot
and the Barrett WAM robot, were able to improve ranking
of grasps through trial-and-error. Both robots showed good
performance with the same set of parameters. A compar-
ison of the algorithm with two different planners showed
that the presented approach performs equally well. How-
ever, we want to stress that our approach (1) is indepen-
dent of the hand kinematics (2) can automatically improve
its grasp ranking (provided feedback) and (3) can be easily
retrained by the user. Finally, our approach performs better
than two State-of-the-Art algorithms on objects that can only
be grasped at specific parts (this is for example the case for big
objects).

We believe that the proposed shape descriptor is a good
representation for grasping and is worth being developed fur-
ther for application on more complex objects and manipu-
lation tasks. Although we achieved a good success rate in
our experiments, our goal in future work is to apply learning
techniques in order to find an even better similarity mea-
sure between heightmaps. Further, the grasp library is to be
improved by clustering heightmaps for better scalability and
matching performance. An additional thread in future work
is to include tactile sensing in order to prevent slippage and
further increase the stability of grasps. This work was focus-
ing on finding stable grasps, but in order to use an object for
manipulation a task specific selection of hand pose and finger
configuration is required, which will be addressed in future
work as well.
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